

SQL Server Virtualization 499

Advanced Troubleshooting and Performance Topics

SQL PASS Virtualization Virtual Chapter 2014.10.08

About David Klee

davidklee.net
gplus.to/kleegeek

linked.com/a/davidaklee

Specialties / Focus Areas / Passions:

- Performance Tuning & Troubleshooting
- Virtualization
- Cloud Enablement
- Infrastructure Architecture
- Health Monitoring
- High Availability
- Disaster Recovery
- Capacity Management
- SQL PASS Virtual Chapters
 - Virtualization
 - Performance
 - HA & DR

HX

n 4 meraliux recilioi

SQL Server Virtualization 101 - 301

- Refresher for previous session topics at: www.davidklee.net/education/videos/
- Focused on:
 - What is virtualization?
 - What does it do for DBAs?
 - Private cloud infrastructure concepts
 - Resources and queues
 - Data management benefits
 - HA & DR features
 - Performance topics

State of Virtualization Today

- Most SQL Servers are virtualized
- A handful of the top performers are not
- Today's hypervisors are functionally transparent to performance
- Virtualization limits today 64 vCPU & 1TB RAM
- Done right, the only risks are perceived risks
- How many are greater than 80% virtual?
- Are these issues holding your back?

Troubleshooting Scenarios

- "Just virtualized and it's slow"
- Noisy neighbors
- Memory pressure
- Storage latency
- CPU pressure
- Need to scale up
- Need to scale out

No silver bullet solutions

"Just Virtualized and Now It's Slow"

- Virtualized and it just "feels" slower
- Where are your benchmarks & baselines?
- Compare these items before and after
- Infrastructure bottlenecks must exist in the VM environment and not in the previous physical one

_

Situation: Storage Performance

- Poor storage performance reported
- Get stats that you can see!
- Perfmon data ongoing metrics
- SQLIO Batch maximums load test
 - PoSH @ bit.ly/1vV2eih
- Symptoms?
 - High read/write latency
 - Low maximum sustained IOps
 - Low maximum throughput

14

4 Heraflux Technologies

Storage Performance Measurements

- Perfmon data extractor
 - By Video: bit.ly/1CTt52w Code: bit.ly/1tyl4JB
- SQL Server storage latency collector
 - Scripts to collect ongoing stats @ bit.ly/1xnqhYq
- Take the results back to storage group
- Work together the infrastructure bottleneck
- What can you do?

Things You Can Do for Storage

- Spread out the workload
 - More file groups / data files
 - More virtual disks
 - More active SAN LUNs & paths
- Archive old data
- More memory (more I/O buffer)
- Query tuning
- Better indexing strategy
- Better table data model
- Table row/page compression

- Appropriate data types
- Index / statistic maintenance
- In-memory constructs
- Etc. etc. etc...

CPU Pressure

- Not as simple as 1:1 vCPU:pCPU ratio
 - Usually a major waste of pCPU resources
- First, "right-size" the vCPU count
 - One size does not fit all
 - Too few is BAD for performance (obvious)
 - Too many is also BAD (not obvious)
 - Review your utilization and workload profile
 - Pick "right" amount of vCPUs for the job
 - Stay tuned for announcements on this topic
 - Goal: 50-60% average utilization
 - Very workload specific

Virtualization Virtual Chapter - SQL PASS

- Queues are not linear
- More background activity, more waits
- Waits = time stolen from VM performance
- CPU, memory, storage, network all have this challenge
- CPU impacts the most common

© 2014 Herafl

Metrics to Collect

- SQL Server
 - Raw CPU / mem / disk usage
 - NUMA memory usage
 - Storage latency by DB file
 - Wait statistics

- Windows
 - CPU & memory consumption
 - Storage IOPs / latency / throughput
 - Processes (SQL Server) vs other)
 - Perfmon how-to @ bit.ly/1sqSVns

Metrics to Collect

- Virtualization
 - Resource consumption by VM
 - Resource utilization by host
 - CPU scheduling queue wait
 - Overcommitment metrics
 - VMware vSphere: CPU Ready
 - MS Hyper-V: CPU Wait Time per Dispatch
- Work with your VM admin to get these

岁

CPU Pressure Remedies

- Schedule less on resource schedulers
- Reduce MaxDOP / Increase Cost Threshold for Parallelism
 - Less widely parallelized queries
- Large memory pages
 - Less pointers
- Spread out workload
 - More & smaller footprint VMs
- Tune high CPU consuming queries

25

Trouble Scaling Up?

- Continue to look for performance gains within your scope
 - Windows OS
 - SQL Server
 - Application data handling
- Faster / larger host hardware
 - Increase the maximum footprint of your VM
- More host hardware
 - Spread out the workload
- Faster SAN
 - Flash & hybrid arrays
 - Faster & more storage interconnects

🔊 2014 Heraflux Technolo

HX

Trouble Scaling Out?

- Dedicated SQL Server virtual infrastructure cluster
- Segregate workloads
- Resource pools & resource reservations
- Ongoing "right-sizing"
- Individual VM efficiency gains add up
- More host hardware
 - Usually memory bound rather than CPU
- Faster SAN
 - Flash & hybrid arrays
 - Faster & more storage interconnects

HX

Conclusions

- Go forth and virtualize your remaining physical servers
- Double check the performance of your virtual servers
- Apply these tips to all of your virtual SQL Servers
 Ongoing, not one-time
- Efficiency goes up
- Performance goes up
- Consolidation ratio goes up
- Licensing costs go down
- Customer satisfaction goes up
- Your stress levels go down

